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1 Abstract

Vision guided robotics has been one of the major research issue for more than three
decades. The more recent technological development facilitated the advancement
in the area which has resulted in a number of successful and even commercial
systems using off–the–shelf hardware. The applications of visually guided systems
are many: from intelligent homes to automotive industry. However, one of the open
and commonly stated problems in the area is the need for exchange of experiences
and research ideas. In our opinion, a good starting point for this is to advertise
the successes and propose a common terminology in form of a survey paper. The
paper concentrates on different types of visual servoing: image based, position
based and 2 1/2D visual servoing. Different issues concerning both the hardware
and software requirements are considered and the most prominent contributions are
reviewed. The proposed terminology is used to introduce a young researcher and
lead the experts in the field through a three decades long historical field of vision
guided robotics. We also include a number of real–world examples from our own
research providing not only a conceptual framework but also illustrating most of
the issues covered in the paper.
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2 Introduction

Using visual feedback to control a robot is commonly termed visual servoing,
(Hutchinson et al. 1996). Visual (image based) features such as points, lines and
regions can be used to, for example, enable the alignment of a manipulator / grip-
ping mechanism with an object. Hence, vision is a part of a control system where
it provides feedback about the state of the environment. Visual servoing has been
studied in various forms for more than three decades starting from simple pick–
and–place tasks to todays real-time, advanced manipulation of objects. In terms of
manipulation, one of the main motivations for incorporating vision in the control
loop was the demand for increased flexibility of robotic systems.

One of the open and commonly stated problems in the area is the need for
exchange of experiences and research ideas.

Initialization

Robot
Control

Initialization

Tracking

Control

Robot

VISUAL   SERVOING 

Figure 1: left) Open–loop robot control: Initialization represents the extraction of
features used to directly generate the control sequence (robot motion sequence) -
no on–line interaction between the robot and the environment exist, and right) Ma-
jor components of a visual servo system: Initialization (visual servoing sequence
is initialized), Tracking (the position of features used for robot control are con-
tinuously updated during the robot/object motion), Robot Control (based on the
sensory input, a control sequence is generated).

A closed–loop control of a robot system, where vision is used as the underlying
sensor, usually consists of two interwined processes: tracking and control, see
Figure 1 (right). Tracking provides a continuous estimation and update of features
during the robot/object motion. Based on this sensory input, a control sequence
is generated. In addition, the system may also require an automatic initialization
which commonly includes figure–ground segmentation and object recognition.

As mentioned earlier, visual servoing has been studied for more than three
decades. More recently, the area has attracted significant attention as computa-
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tional resources have made real-time deployment possible. At the same time, ro-
bust methods for real-world scenarios have gradually enabled progress on realistic
problems in terms of complexity. A problem that has become apparent with the in-
crease in the number of contributions to visual servoing is a lack of a terminology
and taxonomy for the approaches presented. Visual servoing is used in a rich vari-
ety of applications such as lane tracking for cars, navigation for mobile platforms
and manipulation of objects. The most general of these applications is manipu-
lation of objects which requires detection of objects, segmentation, recognition,
servoing, alignment, grasping. Although many approaches do not address all of
these aspects, the manipulation task provides a global framework for consideration
of the diverse research on servoing.

The literature contains an excellent introduction to visual servoing in form of a
tutorial by (Hutchinson et al. 1996). The tutorial is however five years old by now
and significant work has been reported since then. In addition, there is a lack of a
survey of the vast literature available. Consequently, in this paper a comprehensive
survey of the literature is provided. As the basis for the presentation, a taxonomy
of approaches to visual servoing is defined and the key factors influencing visual
servoing are identified. The various approaches to visual servoing are illustrated
by examples that primarily are taken from our own research. The remainder of
the survey starts with a Section 3 that provides an introduction to visual servoing
mainly outlining the history and major milestones in the development of visual
servoing techniques from its very beginning. From this, the major steps involved
in servoing are introduced in Section 4. Each of the steps are then outlined: i)
approaches to visual-motor estimation in Section 5, ii) strategies to feature/state
estimation in Section 6, and iii) methods for control generation in Section 7. These
three steps provide the basic dimensions in our taxonomy for visual servoing. The
literature is then reviewed and the presented approaches are classied and discussed
in relation to the proposed taxomony 8. The final section provides a discussion on
the open issues and trends in the field of visual servoing.

3 Background

The following distinction is usually made between two different ways of using
visual information in a robot system:

• Open–loop Robot Control
Extraction of image information and control of a robot are two separate tasks
where at first image processing is performed followed by the generation of
a control sequence, (see Figure 1, left). A typical example is to recognize
the object to be manipulated by matching image features to a geometrical
model of the object and compute its position and orientation (pose) relative
to the camera (robot) coordinate system. This absolute pose, Cartesian–
space information is used to move the robot to the desired pose relative to
the object. To estimate the pose of the object, the model of the object must be
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available. To move the robot based on the visual information extracted in the
camera frame, the camera(s) has to be calibrated with respect to the robot. In
addition, the robot direct and inverse kinematic models have to be available
to convert Cartesian–space robot positions into joint–space configurations.
The robot can then execute the task by performing “blind” movements which
assumes that the environment remains static after the robot has started to
move (open–loop approach).

• Visual Servoing
In 1979, Hill and Park, (Hill & Park 1979) introduced the term visual ser-
voing to distinguish their approach from earlier work. In 1980 the fol-
lowing taxonomy of visual servo systems was introduced in (Sanderson &
Weiss 1980):
1. Dynamic look-and-move systems: These systems perform the control of
the robot in two stages: the vision system provides input to robot controller
that then uses joint feedback to internally stabilize the robot. As pointed out
by (Hutchinson et al. 1996) nearly all of the reported systems adopt this ap-
proach.
2. Direct visual servo systems1: Here, visual controller directly computes
the input to the robot joints and robot controller is eliminated.

A typical visual servoing task usually includes some form of i) “positioning”
such as aligning the robot/gripper with the target, or ii) “tracking” or remaining
a constant relationship between the robot and the moving target. In both cases,
image information is used to measure the error between the current location of the
robot and its reference or desired location. Image information used to perform
the task is either i) two dimensional expressed by using image plane coordinates,
or ii) three dimensional where camera/object model is employed to retrieve pose
information with respect to the camera/world/robot coordinate system. So, the
robot is controlled either using image information as two- or three dimensional
which classifies the visual servo systems additionally as:

1. Position-based visual servo systems
These systems retrieve the three-dimensional information about the scene
where known camera model (usually in conjunction with a geometric model
of the target) is used to estimate the position and the orientation (pose) of
the target with respect to the camera (world, robot) coordinate system. The
positioning or tracking task is defined in the estimated (3D) pose space.

2. Image-based visual servo systems
Here, 2D image measurements are used directly to estimate the desired move-
ment of the robot. Typical tasks like tracking and positioning are performed

1This term is adopted from (Hutchinson et al. 1996). Sanderson and Weiss used the term visual
servo for this type of systems but that introduces a certain confusion since the term has been widely
used for all types of closed–loop vision based control systems.
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by reducing the image distance error between a set of current and desired
image features in the image plane.

3. 2 1/2 D visual servo systems
Here, a combination of previous two approaches is used and the error to be
minimized is specified both in the image and in the pose space.

Hence, the general idea behind visual servoing is to derive the relationship
between the robot and the sensor space and estimate a velocity screw associated
with the robot frame needed to minimize the specified error.

Visual servoing borrows from many different research areas including robot
modeling (geometry, kinematics, dynamics), real–time systems, control theory,
systems (sensor) integration, computational vision (image processing, structure–
from–motion, camera calibration). As pointed out in (Corke 1994), there are many
different ways of classifying the reported results: based on sensor configuration,
number of cameras used, generated motion command (2D,3D), scene interpreta-
tion, underlying vision algorithms. Given the vast amount of published material
within and across different research areas, the next section proposes a common
taxonomy. The proposed taxonomy is used to reference a number of contributions
regarding visual servoing.
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Figure 2: The major processes involved in a vision based control of a robot. A
relative Euclidian motion of the robot is defined as the input u in the task space of
the robot, T . x represents the state vector, y is the measurement vector and y∗ is
the vector of desired measurements in the sensor space, S .
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4 Categorization

Let us assume, according to Figure 2, a robotic system that operates in a 3D
world. The relative Euclidian motion of the robot is produced by the input u in
its task space, T . Since, in our context, T represents the set of all poses that the
robot’s end–effector can attain, it is denoted by TG ⊆ SE(3). If the robot is con-
trolled using six-degree Cartesian velocity representation, the control input vector
is u = [VX VY VZ ωX ωY ωZ ]T ∈ R (6), the velocity screw of the robot. The state
vector, x, may, for example, represent the pose of the target, X = [R, t], usually
represented by translation and rotation parameters, q = [tX tY tZ φ ψ γ]T ∈ R (6).
The measurement vector y may, for example, contain the pose of the target or im-
age point coordinates, y = [ [x1 y1], ...[xk/2 yk/2] ]T ∈ R (k) while y∗ represents the
vector of desired measurements.

A visual servoing task is also referred to as a task function, (Chaumette et al.
1991) or a control error function. Representing some desired set of features by y∗

and the set of current features with y, the objective of visual servoing is to regulate
the task function to zero. When the task is completed, the following holds:

e(y∗−y) = 0. (1)

The task function is also referred to as kinematic error function or virtual kine-
matic constraint in the case of position based visual servoing and image error
function in the case of image based visual servoing, (Hutchinson et al. 1996).

For the discussion, the research issues are divided into three parts:

• Visual-Motor Model Estimation
(Corke & Good 1996) make a distinction between visual kinematic and vi-
sual dynamic control where the former deals with how a manipulator should
move in response to the perceived visual information, while the latter ap-
proach accounts for the dynamic effects that usually occur in a robotic sys-
tem. Accordingly, the basic concern here is to classify systems based on
the estimation of visual-motor model, see Figure 4: i) systems where visual-
motor model is known a–priori, or ii) estimated2 .

• State Estimation
Here, the issues related to visual measurements are addressed: camera con-
figuration, number of cameras and commonly adopted image processing
techniques. Visual measurements define the extraction of visual informa-
tion such as optical flow, position and orientation of an object or features
like points or lines. The following sensor-robot configurations may be em-
ployed: eye–in–hand, stand alone (fixed) camera system or their combina-
tion, see Figure 3. The estimation may be performed in image space (2D)

2The further division of the former systems to position, image or 2 1/2D based is just for the
simplicity reasons. This does not exclude the issue that the latter systems will also use one of these
approaches during the control of the robot.
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and used together with camera model to retrieve the 3D information. For
systems that utilize image (2D) information directly, the task function is nor-
mally also defined in image space. However, this is not the case in general
for systems that compute the complete 3D pose of the target where the task
function may be expressed both in 2D or in 3D.

• Control Generation
Control synthesis is closely related to the first issue, visual-motor model
estimation. The accuracy of the model will directly affect the rate of con-
vergence of the system. In this section, some of the work related to the
underlying control design is briefly reviewed.

In the next section, visual servo systems are categorized with respect to the
estimation of the visual–motor model, see Figure 4. For the systems where
the geometry or kinematics of the manipulator is known and used in the
servoing process, it is assumed that the visual–motor model is known a–
priori. Depending on the accuracy of the model and the specification of the
task the systems are additionally divided into position, image and 2 1/2D
based systems. The other group of systems estimate the visual–motor model
either analytically or by learning.

1 2

EYE−IN−HAND STAND−ALONE EYE−IN−HAND STAND−ALONE

number of cameras

CAMERA−ROBOT CONFIGURATION

>2

VM5VM1 VM4VM3VM2

Figure 3: Camera–robot configurations used in visual servoing control (from left to
right): VM1 monocular eye–in–hand, VM2 monocular stand–alone, VM3 binocu-
lar eye–in–hand, VM4 binocular stand–alone and VM5 redundant camera system.
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KNOWN A−PRIORI

POSITION BASED 2 1/2D IMAGE BASED

VISUAL−MOTOR MODEL ESTIMATION

ESTIMATED

BY LEARNINGANALYTICALLY

Figure 4: Visual servo systems with respect to the visual–motor model estimation.
Systems where visual-motor model is known a priori use the kinematic model
of the robot, camera parameters as well as different levels of calibration between
the camera and the robot system to estimate the desired robot motion. On the
other hand, there are systems that estimate visual-motor model either by learning or
analytically, allowing for the control without the knowledge of the robot geometry.

5 Visual-Motor Model Estimation

To classify systems according to the estimation of visual-motor model, the tax-
onomy as presented in Figure 4 and Figure 5 is adopted. If the robot forward
or inverse kinematics are known, the differential changes between the joint and
Cartesian space are computed using robot Jacobian. These systems are classified
as systems where visual-motor model is known a-priori. Depending on the feed-
back representation mode and level of calibration between the camera and the robot
frame, the visual servo systems are classified as position based, image based or 2
1/2 D systems.

Most of the early visual servo systems relied on a accurate calibration of the
system and performed tasks using the position based approach. Since the process of
calibration could be tedious, error prone or even impossible to perform, approaches
that avoid the calibration step or where a some knowledge of the calibration is suf-
ficient, became appealing. Hence, image based servo systems are usually preferred
to position based systems since they may carry out the task without the accurate
calibration. However, some knowledge of the transformation between the sensor
and the robot frame is still required.

On the other hand, there are systems that completely obviate the calibration
step and estimate the visual-motor model either on– or off–line. The visual-motor
model may be estimated: a) analytically (nonlinear least square optimization) or
b) by learning or training. In addition, as presented in Figure 5, the systems may
estimate an image Jacobian and use the known robot model or a coupled robot-
image Jacobian may be estimated.
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JOINT
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PLANESPACE

Image JacobianRobot Jacobian

Coupled Image−Robot Jacobian

Figure 5: Some of the visual servo systems use the knowledge of robot kinemat-
ics (robot Jacobian) and then the image Jacobian relates the differential changes
between image features and the robot’s Cartesian velocities or incremental pose
changes. On the other hand, a coupled robot-image Jacobian relates the differen-
tial changes between the robot joints and image features.

5.1 A-priori Known Models (Calibrated Models)

As already mentioned, we classify visual servoing approaches based on the feed-
back representation mode. These can be: i) position based, ii) image based and
iii) 2 1/2 D visual servo systems. We now present the basic ideas and discuss the
characteristics of each of them.

5.1.1 Position based control

Position based visual servoing is usually referred to as a 3D servoing control since
image measurements are used to determine the pose of the target with respect to
the camera or some common world frame. The error between the current and
the desired pose of the target is defined in the task (Cartesian) space of the robot.
Hence, the error is a function of pose parameters, e(X).

Two examples of position based servoing are presented in Figure 6. The fig-
ure on the left shows an example where the camera is controlled from its current
pose, CXO, so to achieve the desired pose with respect to the object, CX∗

O. In this
example, the camera is attached to the last link of a manipulator and observes a
static or a moving target, and the model of the object is used to estimate its pose.
The figure on the right shows an example of a static camera and a moving object.
It is assumed here that the object is held by a manipulator which is then controlled
to, again, achieve the desired pose between the object and the camera. Since the
pose of the object is estimated relative to the camera, the transformation between
the robot and the camera has to be known to generate the required motion of the
manipulator.

These examples demonstrate two main reasons why the position based visual
servoing is usually not adopted for servoing tasks: i) it requires the estimation of
the pose of the target or which requires some form of a model, and ii) to estimate
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Figure 6: Two examples of position based visual servoing control: left) an example
of an eye–in–hand camera configuration where the camera/robot is servoed from
the CXO (current pose) to the CX∗

O (desired pose), and right) a monocular, stand–
alone camera system used to servo a robot held object from its current to the desired
pose.

the desired velocity screw of the robot and in order to achieve accurate positioning,
it requires precise system calibration (camera, camera/robot). A block diagram of
the position based visual servoing approach is presented in Figure 7. Here, the
difference in pose between the desired and the current pose represents an error
which is then used to estimate the velocity screw for the robot, q̇ = [V;Ω]T , so to
minimize the error.

An Example: Align and track task

Let us assume that the task is to first achieve and maintain a constant pose between
the object and robot end–effector, OX∗

G. According to (Hutchinson et al. 1996), this

BASED CONTROL

POSITION
(CARTESIAN)

FEATURE

EXTRACTIONESTIMATION

POSE3D 
CAMERA

ROBOT
+

−

V, Ωc
o *

c
o

X

X

Figure 7: A block diagram of the position based visual servoing: the pose of the
target is estimated, CXO and compared to the reference (desired) pose, CX∗

O. This
is then used to estimate the velocity screw, q̇ = [V; Ω]T , for the robot so to mini-
mize the error.
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is considered as an EOL (endpoint open loop) system, since only the target object
is observed during the servoing sequence.

G

*R
XG

*O
XG

R

CX

C
OX

OX

G
RX

Figure 8: Relevant coordinate frames and their relationships for the “Align–and–
track” task where a stand–alone camera system is used to guide the robot to the
desired pose with respect to the object. Here, OX∗

G represents the desired pose
between the object and the end–effector while OXG represents the current (or ini-
tial) pose between them. To perform the task using the position based servoing
approach, the transformation between the camera and the robot coordinate frames,
CXR, has to be known. The pose of the end-effector with respect to the robot base
system, RXG is known from the robot’s kinematics.

The manipulator is controlled in the end-effector frame. According to Figure 8,
if OXG = OX∗

G then RXG = RX∗
G. The error function to be minimized may then

be defined as the difference between the current and the desired end-effector pose:

∆ RtG = RtG −
Rt∗G

∆ RθG = RθG −
Rθ∗G

(2)

Here, RtG and RθG are known from the forward kinematics equations and Rt∗G and
Rθ∗G have to be estimated. The homogeneous transformation between the robot and
desired end–effector frame is given by:

RX∗
G = RXC

CXO
OX∗

G (3)

The pose between the camera and the robot is estimated off–line 3 and the pose of
the object relative to the camera frame is estimated using the model based tracking

3The homogeneous transformation relating the camera and the robot coordinate frames was ob-
tained off–line. A LED was placed at the end of the manipulator chain and its position in the im-
age was estimated while the manipulator moved through a number of predefined points. Assum-
ing the knowledge of the camera intrinsic parameters, the pose estimation approach presented in
(Kragic 2001) was used to estimate the transformation between the robot and the camera.
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Figure 9: A sequence from a 6DOF visual task: From an arbitrary starting position
(upper left), the end–effector is controlled to a predefined reference position with
respect to the target object, (upper right). When the object starts moving, the visual
system tracks the pose of the object. The robot is then controlled in a position based
framework to remain a constant pose between the gripper and the object frame.

system presented in (Kragic 2001). Expanding the transformations in (Eq. 3) we
get:

Rt∗G = RRC
CR̂O

Ot∗G + RRC
C t̂O + RtC (4)

where CR̂O and C t̂O represent predicted values obtained from the tracking algo-
rithm. Similar expression can be obtained for the change in rotation by using the
addition of angular velocities (see Figure 8) and (Craig 1989):

RΩ∗
G = RΩC + RRC

CΩ̂O + RRC
CR̂O

OΩ∗
G (5)

Assuming that the RRC and CR̂O are slowly varying functions of time, integration
of RΩ∗

G gives (Wilson et al. 1996):

Rθ∗G ≈
RθC + RRC

Cθ̂O + RRC
CR̂O

Oθ∗G (6)

Substituting (Eq. 4) and (Eq. 6) into (Eq. 2) yields:

∆ RtG = RtG −
RtC −

RRC
C t̂O −

RRC
CR̂O

Ot∗G
∆ RθG ≈

RθG −
RθC −

RRC
Cθ̂O −

RRC
CR̂O

Oθ∗G
(7)
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which represents the error to be minimized:

e =

[

∆ RtG

∆ RθG

]

(8)

After the error function is defined, a simple proportional control law is used to
drive the error to zero. The velocity screw of the robot is defined as4:

q̇ ≈ Ke (9)

By using the estimate of object’s pose and defining the error function in terms of
pose, all six degrees of freedom of the robot are controlled.

A few example images obtained during one of the experimental sequences are
shown Figure 9. From an arbitrary starting position, the end–effector is moved to
a predefined stationing pose with respect to the target object (first row, left). When
the object starts to move, the visual system estimates its pose, CXO. The error is
estimated according to (Eq. 8) and used to estimate the velocity screw of the robot
using (Eq. 9).

In general, the main advantage of this approach is that the camera/robot trajec-
tory is controlled directly in the Cartesian coordinates. This allows easier trajectory
planning for e.g., obstacle avoidance. However, especially in the case of eye–in–
hand camera configuration, image features used for pose estimation may get out of
the image. The reason is that the control law does not incorporate any constraints
when it comes to image plane feature coordinates. If the camera is only coarsely
calibrated (i.e., the camera parameters are approximately known), the current and
desired camera poses will not be accurately estimated which will thus lead to a
poor performance (in terms of accuracy) or even a complete failure of the visual
servoing task. One of the solutions to this problem is to design the servo system
as an endpoint closed loop system where both the target and the end–effector are
observed during the execution of the task (Hutchinson et al. 1996).

There are examples of utilizing both eye-in-hand and stand-alone camera con-
figurations for position based control. The examples range from planar positioning
systems (Allen et al. 1993), to systems that use object models and demonstrate full
pose determination in real–time, see for example (Wilson et al. 1996), (Wunsch &
Hirzinger 1997) and (Drummond & Cipolla 1999b).

An extensive evaluation of the position based visual servoing with respect to
trade–offs between the requirements of speed, accuracy and robustness is given in
(Wilson et al. 2000). Since most of the reported systems adopting this approach
concentrate on the extraction of the visual information rather than on the analysis
of sensitivity, etc., we provide additional references in Section 6. The section also
provides a number of pointers related to the pose estimation problem, structure–
from–motion, and stereo reconstruction problems.
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Figure 10: An example of image based visual servoing. Let us assume a case of
a static camera and a robot holding the object. A number of feature points on the
object is tracked and used to generate a vector of current measurements, fc. The
vector of reference measurements is denoted f∗. The error function is defined as a
function of distance between these measurements, e = fc

− f∗. This error function
is then updated in each frame and used used together with the image Jacobian to
estimate the control input to the robot.

5.1.2 Image based control

Image based visual servoing involves the estimation of the robot’s velocity screw,
q̇, so as to move the image plane features, fc, to a set of desired locations, f∗, (Hager
et al. 1995), (Malis et al. 1998), (Chaumette et al. 1991). Image based visual
servoing control involves the computation of the image Jacobian or the interaction
matrix, (Hutchinson et al. 1996), (Espiau et al. 1992), (Hashimoto & Noritsugu
1998). The image Jacobian represents the differential relationship between the
scene frame and the camera frame (where either the scene or the camera frame is
usually attached to the robot):

J(q) =
[

δf
δq

]

=









δ f1(q)
δq1

. . . δ f1(q)
δqm

...
. . .

...
δ fk(q)

δq1
. . . δ fk(q)

δqm









(10)

where q represents the coordinates of the end-effector in some parameterization of
the task space T , f [ f1, f2, ..., fk ] represents a vector of image features, m is the
dimension of the task space T and k is number of image features. The relationship
between a velocity screw associated to the manipulator and the image parameters
rates of change is given by:

ḟ = J q̇ (11)
4It is straightforward to estimate the desired velocity screw in the end–effector coordinate frame.
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Using a classical perspective projection model with unit focal length, the relation-
ship between an image point velocity and a 3D velocity screw is given by:

[

ẋ
ẏ

]

=

[ 1
Z 0 −

x
Z xy (1+ x2) −y

0 1
Z −

y
Z −(1+ y2) xy x

]

q̇ (12)

where Z represents the 3D distance of the point with respect to the camera. Im-
age based visual servo systems express the control error function directly in 2D
image space. If image positions of point features are used as measurements, the
error function is defined simply as a difference between the current and the desired
feature positions:

e(f) = fc
− f∗ (13)

The most common approach to generate the control signal for the robots is the
use of a simple proportional control5 (see (Papanikolopoulous & Khosla 1993) and
(Hashimoto, Ebine & Kimura 1996) for an optimal control approach):

u = q̇ = KJ†e(f) (14)

where J† is the (pseudo-)inverse of the image Jacobian and K is a constant gain
matrix.

Figure 10 shows an example of an image based visual servoing approach where
it is assumed that the camera is static and that it observes the robot holding an
object. A number of feature points on the object are tracked and used to generate
a vector of current measurements, fc. The vector of reference measurements is
denoted f∗. The error function is defined as a function of distance between these
measurements according to (Eq. 13). This error function is then updated in each
frame and used together with the image Jacobian to estimate the control input to
the robot using (Eq. 14).

The vector of reference measurements, f∗, is usually generated using a so called
“teach by showing” approach where the robot is first moved to a desired position
and the image coordinates of feature positions are recorded. After that, the robot is
moved to some other, initial position and visual tracking is initiated. In a closed–
loop manner, the robot is controlled while moving to the desired or “taught” po-
sition while tracking the features and estimating fc. In (Horaud et al. 1998), the
desired position between the gripper and an object is defined through a projective
representation and the new goal image is computed when the target changes instead
of being learnt manually.

According to (Eq. 12), the estimation of the image Jacobian requires knowl-
edge of the camera intrinsic and extrinsic parameters. Extrinsic parameters also
represent a rigid mapping between the scene or some reference frame and the cam-
era frame. If one camera is used during the servoing process, the depth informa-
tion needed to update the image Jacobian is lost. Therefore, many of the existing
systems usually rely on a constant Jacobian which is computed for the desired

5With an assumption that the target is motionless.
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camera/end–effector pose. This is one of the drawbacks of this approach, since
the convergence is ensured only around the desired position. This problem may be
solved by adaptive estimation of the depth (Papanikolopoulous & Khosla 1993),
determining depth from the a–priori known relationship of the features or using a
structure from motion approach if the camera motion can be measured, (Longuet-
Higgins 1981), (Jerian & Jain 1991). However, using variable depth may result in
inadequate camera/robot motions leading to possible local minima and singularities
and ultimately unstable behavior of the robot, (Chaumette 1997). If a stand–alone
camera system is used, and if the calibration between the robot and the camera
frame is (partially) known, the depth required for the image Jacobian estimation
can be retrieved using the forward kinematics of the robot and calibration parame-
ters. The image Jacobian matrix depends also on the type of features used and the
servoing task itself (point-to-point positioning, point-to-line positioning, etc.), see
(Hager 1997) for examples.

In general, a minimum of three feature points are necessary to control the po-
sition and orientation of the camera in 3D space (assuming that an eye–in–hand
configuration is used). However, there are two cases of singular configurations
for this case, (Michel & Rives 1993): i) if the three points are aligned, and ii) if
the optical center lies on the cylinder which includes the three points and whose
axis is perpendicular to the plane containing all three points. It has been proven in
(Hashimoto & Noritsugu 1998), that the image Jacobian becomes full rank in the
case of four points if three of them are not aligned.

Compared to an eye–in–hand configuration where the object to be manipulated
is usually not in the field of view of the camera, a stand alone camera can easily
observe the object and the gripper simultaneously (Hager 1997). If a stereo camera
system is used, the following property may be used: zero disparity between a point
on the manipulator and a point on the object in two images means that these two
points are same point in space. In other words, the error function is simultaneously
minimized in two images. The image Jacobian is estimated by simply concate-
nating two monocular image Jacobians. If the epipolar geometry of the camera is
known, depth estimation becomes trivial. In addition, imposing a line trajectory in
two images results in a line motion in 3D whereas in the case of one camera, any
planar curve projects as a line in the image.

Image based visual servoing control is considered to be very robust with respect
to camera and robot calibration errors (see (Hutchinson et al. 1996) and (Weiss
et al. 1987)). Coarse calibration only affects the rate of convergence of the control
law in the sense that a longer time is needed to reach the desired position.

Example Tasks

Let us assume the following scenario:

Tasks: i) to execute an insertion task, ii) to grasp an object, or iii) to place an
object held by the end-effector to a pose defined in the image space,
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Assumptions: i) no models of the objects are given, ii) an image based track-
ing algorithm is available (which estimates 2D image positions of feature
points), iii) a stereo stand–alone camera system is used during the execution
of the tasks.

fl
c

f*
l fr

*

fr
c

R

G
R

XC

X

Figure 11: A schematic overview of a point–to–point positioning task using a
binocular camera system. The error function is defined for the left, e l = fc

l − f∗l ,
and the right image, er = fc

r − f∗r . To drive this error to zero the image Jacobian is
estimated by stacking of a two monocular image Jacobians defined for each of the
cameras. To control three translational degrees of freedom of the manipulator, it is
enough to estimate the distance between two points in each image. This approach
does not require accurate estimation of the transformation between the robot and
the camera coordinate systems, that is, CXR has to be only roughly known.

The examples presented in this section are to large extent motivated by the
work presented in (Hager et al. 1995). No metric information about the object is
used. Calibration insensitive positioning and alignment are performed by tracking
small regions on the target and the end–effector. Although the examples shown
are very basic and simple, they are necessary building blocks for more complex
hand–eye tasks (Dodds et al. 1999).

Figure 11 shows an example of a task and setting used to perform a positioning
task using feedback from stereo vision. Here, the image based visual servoing
approach is used to minimize an error function defined directly in the image. As
it can be seen in the figure, there is a feature (in this case it is assumed that it is a
point feature) on the end–effector denoted fc

l and fc
r for the left and the right image,
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Figure 12: Example images obtained during the execution of the insertion task.

respectively. The position of the feature is tracked and used to design a control law
to bring that point to the position denoted f∗l and f∗r . The task is accomplished when
fc and f∗ coincide in both images.

The first task is to place a screwdriver in the hole on the upper side of the box,
see Figure 12. The diameter of the hole is approximately 5mm. The screwdriver
is held by the robot and a constant relationship between them is assumed (rigidity
constraint). A predefined configuration of the last three joints of the robot is used
and the robot holds the screwdriver vertically with respect to the table plane. Only
three degrees of freedom of the robot are controlled corresponding to the positional
degrees of freedom, T ⊆ R (3). In each image, the region around the tip of the
screwdriver is tracked and its position fl and fr is used to estimate the error:

el = fl − f∗l
er = fr − f∗r

(15)

The desired positions f∗l and f∗r are chosen manually at the beginning of the
servoing sequence. Using (Eq. 14), the relationship between the robot’s kinematic
screw and the observed speed of the image features in the left and right cameras
respectively is:

Kl el = Jl(q) Gq̇

Kr er = Jr(q) Gq̇
(16)
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Figure 13: Example images obtained during grasping of a toy car.

It has been suggested in (Hager 1997) that these two equations may be “stacked”
yielding the following:

K e(f) = Jlr(q) Gq̇ (17)

where f = [xl yl xr yr]
T . It is obvious that the image Jacobian in (Eq. 17) obtained

by stacking two monocular image Jacobians cannot be directly inverted since it has
four rows and six columns and rank three. The reason for the rank is that, due to
the geometry of the stereo system, y coordinates of the features will be the same in
the two images6. Hence, this measurement is redundant and can be discarded from
the equation. Since in this case, only the translational degrees of freedom have to
be controlled, Gq̇ = [VX VY VZ]T , it is enough to use the first three columns of the
image Jacobian. Now, the image Jacobian is a square, 3× 3 matrix and it can be
inverted directly without using a left or right inverse. Therefore, the velocity screw
of the robot is estimated using a simplified version of (Eq. 14).

Four example images obtained during the execution of the insertion task are
shown in Figure 12 (images from one of the cameras are shown): the figure on the
left (first row) shows the first image where the initial feature position at the tip of the
screwdriver and the desired position on the box are chosen manually. The figure on
the right and the figure on the left (second row), show the intermediate images. The
last figure (second row, right) shows the final stage of the task when the manipulator

6That is, although four measurements are provided by two cameras, the point has only three
degrees of freedom.
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moves vertically down for a few centimeters showing that the insertion task was
successfully performed. Since it is assumed that the relationship between the end–
effector and the tip of the screwdriver remains constant, this is an example of an
endpoint closed loop system.

Another similar task is shown in Figure 13. The control is generated in the
same manner and the orientation of the car is known in advance. The image on the
left (first row) shows the initial position of the robot. The white rectangle represents
a point on the end–effector tracked by the vision system. The cross represents the
desired position of the point. After the desired point is reached (first row, right), the
manipulator moves vertically down a few centimeters and grasps the car (second
row). Again, a point on the end–effector and on the object are observed making
this an endpoint closed loop system. However, the task was somewhat simplified.
Since this is an example of point–to–point positioning (as in the previous example),
it allows us to estimate the translational velocity needed to bring the point on the
end–effector to the desired point on the object. Hence, the orientation of the end–
effector has to be set from the beginning to allow for the grasp to occur.

The third example considers an alignment of the wheels of a toy car with the
road, see Figure 14. The image coordinates of the wheels are denoted wl,r

1 and wl,r
2

for left and right image respectively and an image line by ll,r . It has been shown in
(Hager 1997) that given two image points on the line, p1 and p2, the equation of
the line is given by:

l =
L

√

L2
x +L2

y

where L = p1 ×p2 (18)

Here, two tasks are simultaneously performed: point–to–line (w1 ∈ l) and point–
to–point (w2 = p2) positioning. For any homogeneous vector p in the image, p · l
is the distance between the point and the line. Thus, a positioning error between a
point wl,r and a line ll,r in left and right image respectively is defined as:

epl =

[

wl
1 · l

l

wr
1 · l

r

]

(19)

The Jacobian for point–to–line positioning is then estimated by again stacking two
monocular point–to–line Jacobians:

Jpl(w1, l) =

[

ll T

lr T

]

Jpp(w1) (20)

Concatenating the task error, (Eq. 19) and the image Jacobian, (Eq. 20) with those
for w2 = p1 (given by (Eq. 15) and (Eq. 17)) the velocity screw of the robot is
estimated using (Eq. 14).

The first image in Figure 14 shows a schematic overview of the task and the
rest of the images were obtained during the execution of the task. Here, the features
tracked in two images are the wheels of the car denoted w1 and w2 (in each image).
The task is accomplished when the point p1 and w1 coincide in each image and the
point w2 ∈ l.
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Figure 14: An example of positioning a car parallel to the road. Beside the posi-
tioning, the car also has to be oriented so to be aligned with the direction of the
road. The first image shows a schematic overview of the task: the features tracked
in two images are the wheels of the car denoted w1 and w2 (in each image). The
equation of the of line l representing the orientation of the road is estimated using
(Eq. 18). For this purpose two points, p1 and p2, were manually chosen in each
image at the beginning of the servoing sequence. The task is accomplished when
the point p1 and w1 coincide in each image and the point w2 ∈ l.
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Figure 15: A camera observing a plane from two positions: there is a linear trans-
formation relating the coordinates of a point in two camera images. This transfor-
mation is a 8DOF 3×3 matrix M which may be estimated using four or more point
correspondences. The homography can be written in terms of internal camera pa-
rameters, A, the camera displacement between the views, X(R, t) and the equation
of the plane (n,d) being viewed: fc = Mf∗ = A(R + tnT /d)A−1f∗. If the internal
parameters, A, are known, the rotation R and the plane normal n can be fully re-
covered from the homography. The translation t and the distance to the plane d can
be recovered only up to a scale, see (Faugeras 1993).

5.1.3 2 1/2D visual servoing

(Malis et al. 1998) present 2 1/2D visual servoing approach. The method was
originally proposed for an eye–in–hand camera configuration. This approach is a
“halfway” between the classical position-based and image-based approaches. It
avoids their respective disadvantages: contrarily to the position based visual ser-
voing, it does not need any geometric 3D model of the object. In comparison to
the image-based visual servoing, it ensures the convergence of the control law in
the whole task space. The approach using a hand–in–eye camera configuration is
briefly presented.

The method is based on the estimation of the camera displacement (the rota-
tion and the scaled translation of the camera) between the current and the desired
views of the object. In each iteration, the rotation between these two views is es-
timated which allows for the translational and the rotational loop to be decoupled.
In (Malis et al. 1998) the use of extended image coordinates is proposed where
a third, normalized z component is added to the normalized image coordinates
(Faugeras 1993). This coordinate is obtained from a partial Euclidian reconstruc-
tion.

It is argued in (Malis et al. 1998) that the interaction matrix mapping the differ-
ential changes between the robot velocity and the extended image coordinates has

24



uθ*

uθ

ROBOT CAMERA

FEATURE

EXTRACTION
ESTIMATION
3D POSE
PARTIAL

POSITION

ROTATION

Ω

V
+

−
+

−

CONTROL LAW

f *

f c

Figure 16: A block diagram of 2 1/2D visual servoing as proposed by
(Malis, Chaumette & Boudet 1998). The positioning task in this case can be de-
scribed as follows: e = [fc

− f∗ uT θ]T where u and θ represent the rotation axis and
the rotation angle obtained from matrix R, see Figure 15.

no singularities. This allows for the convergence of the positioning task in all the
task space provided that the intrinsic camera parameters are known. If the intrinsic
parameters are not accurately known, the authors propose the necessary and suffi-
cient conditions for the local asymptotic stability. The basic idea of the approach
is presented in Figure 15, and a block diagram of the approach is shown in Fig-
ure 16. A camera attached to a manipulator is observing a plane from the reference
(desired) and the current position. There is a linear transformation relating homo-
geneous coordinates fc and f∗ of a point in two pinhole camera images of a planar
surface. This transformation is a 3×3 matrix M which may be estimated using four
or more point correspondences. The homography can be written in terms of inter-
nal camera parameters A, the camera displacement between the views, X(R, t) and
the equation of the plane (n,d) being viewed: fc = Mf∗ = A(R+ tnT /d)A−1f∗. If
the internal parameters A are known, the rotation R and the plane normal n can
be fully recovered from the homography. The translation t and the distance to the
plane d can be recovered up to scale, see (Faugeras 1993). The error function to be
minimized is defined as:

e =
[

fc
− f∗ uT θ

]T
(21)

where u and θ represent the rotation axis and the rotation angle obtained from the
rotation matrix, R. A simple proportional control law can be designed to drive the
error to zero as presented in (Eq. 14). See (Malis et al. 1998) for the full derivation
of the image Jacobian matrix.

5.2 Visual-Motor Model Estimation

It has been demonstrated in previous section that calibration is required to estimate
the control input to the robot controller. A number of systems that deal with un-
known robot kinematics and/or unknown camera parameters have been proposed
in the literature. The visual–motor model is estimated either analytically during the
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execution of the task (on–line) or it may be learned off–line prior to the execution
of the task. Some of the systems that estimate the image or coupled robot-image
Jacobian either by learning or analytically are now reviewed.

(Hosoda & Asada 1994) present a control scheme where the kinematic struc-
ture of the system is completely unknown and coupled robot-image Jacobian is
estimated. The proposed scheme does not depend on the number of cameras, their
configuration or on the complexity of the system structure. The main objective
of this work was to ensure asymptotic convergence of the image features to the
desired values which means that the estimated parameters of the Jacobian do not
necessarily converge to the true values. In their later work, (Hosoda et al. 1998) the
authors incorporate visual feedback and a Broyden Jacobian estimator with force
feedback for a hybrid control strategy. The image Jacobian is estimated on–line
but the robot model is assumed known.

(Jägersand 1996) and (Jägersand et al. 1997) formulates visual servoing as a
nonlinear least squares problem solved by a quasi–Newton method using Broyden
Jacobian estimation. The experiments are performed for 3,6 and 12 DOF robots.
This work focuses on servoing a robot end–effector to a static target. Similar ap-
proach is extended by (Peipmeier et al. 1999a), (Peipmeier et al. 1999b) for ser-
voing on a moving target. Their experimental results are obtained with a 2DOF
robot.

The presented approaches estimate the Jacobian while servoing the robot to the
goal/desired pose. Since the update is only in the goal direction, the estimation of
the Jacobian will be performed only in a part of the task space. Instead, in (Sutanto
et al. 1998) the idea of exploratory movement for the purpose of improving the
estimate of coupled robot-image Jacobian is introduced. However, the exploratory
motion does not alleviate the problem of dealing with singularities in the actual
control surface.

Most of the mentioned approaches are based on estimating point features Jaco-
bians. It is clear that for cases where features like lines are used, these approaches
are not applicable, and that one has to resort to the methods presented in the previ-
ous chapter.

An example of estimating visual–motor model by learning is presented in (Miller
1989). The author proposes a neural network based learning control system, where
the CMAC (Cerebeller Model Arithmetic Computer) memory is employed for the
learning. Here, no assumptions or a–priori knowledge about the robot kinematics
nor the object speed or orientation relative to the robot are made. The drawback of
this method is that the network has to be trained over the whole workspace which
requires significant computational resources.

In (Carusone & D’Eleurterio 1998) a similar approach is used to train an un-
calibrated industrial robot. The neural network provides the estimate of the pose
of the target in the manipulator coordinate frame. The pose is then used to guide
the robot so as to grasp the object. After a long initial training phase, the robot is
servoed to a static target with a 1.5 pixel RMS error.

(Suh & Kim 1994) use a fuzzy membership function neural network where the
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network is trained to generate fast movements of the robot when far away from
the objects and fine movements when near the target. It is argued that a stable
performance is established over the whole workspace, but since only the simula-
tion results are presented, it is not clear how the approach copes with inaccurate
camera parameters and measurements of the target features. In their later work,
(Suh 1996), the results obtained with a real robot are presented. The robot is con-
trolled to align with an object lying in a plane parallel to the image plane. The robot
first moves in a direction perpendicular to the object while the final orientation is
kept fixed when near the object.

Most of the reported learning based approaches proceed in a similar manner.
Although this approach gives accurate results after the initial training phase (for the
portion of space on which it was trained), the ability to handle a large set of objects
as well as the ability to perform the tasks in all 6DOF are the major milestones.

6 Obtaining Visual Measurements

In this section, the emphasis is on issues such as camera configuration and image
processing techniques. Visual servo systems in general employ visual feedback to
obtain measurements either: i) directly in the image plane using correlation based
methods, optical flow techniques, image differencing, or ii) use camera parame-
ters and some pre–knowledge about the observed image features (CAD models) to
determine the pose of the object. The adopted techniques usually depend on the
number of cameras used, camera configuration, the level of calibration and some
pre-knowledge about the scene. Some of the commonly used techniques in visual
servoing are now reviewed, starting with approaches that estimate the complete
pose of the object.

To determine the 3D pose of an object relative to the camera, a number of
image features are used together with the information about the intrinsic parameters
of the camera (see for example (Roberts 1965), (Fischler & Bolles 1981), (Lowe
1992), (Horaud et al. 1989), (DeMenthon & Davis 1995), (Braud et al. 1994)).
An extensive survey of model–based approaches can be found in (Tarabanis et al.
1995). It has been shown that three matched points between the model and the
image yield multiple solutions, while four points give a unique solution, (Fischler
& Bolles 1981), (Ganapathy 1984). Systems that explicitly estimate the complete
pose of the object usually use a single camera and features used in the matching
process may be points along edges (Giordana et al. 2000), (Drummond & Cipolla
2000), line segments (Ruf et al. 1997) or a combination of features (Wunsch &
Hirzinger 1997), (Tonko et al. 1997).

In (Longuet-Higgins 1981) the importance of the 3D to 2D projective mapping
was outlined. Furthermore, the relationship between matched features and the re-
covery of Euclidian structure and motion was established rising the issues of epipo-
lar geometry and essential matrix estimation (Faugeras 1993). A number of authors
further investigated this relationship, (Tsai & Huang 1984), (Faugeras 1993). In
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the case of uncalibrated cameras, the relationship between two images is repre-
sented using a fundamental matrix, (Zhang et al. 1995), (Luong & Faugeras 1996).
The use of the fundamental matrix allows camera calibration and Euclidian recon-
struction without the a–priori knowledge of the camera parameters. Systems that
exploit the epipolar geometry for visual servoing may use one (Basri et al. 1998),
two (Ruf & Horaud 1999) or more cameras (Scheering & Kersting 1998).

As the last group of visual servo systems we consider systems that perform
the estimation directly in the image plane. Frequently used methods for include:
window (region of interest) based tracking, feature (lines, circles) based tracking,
active contours or snakes. Window or area based methods are usually used to
track a specific pattern exploiting temporal consistency which assumes the appear-
ance of the tracked pattern will change little, (Hager & Toyama 1996), (Brandt
et al. 1994), (Crowley & Coutaz 1995), (Rizzi & Koditschek 1996), (Kragić &
Christensen 1999a). Window based techniques are computationally fast and simple
and usually do not require any specialized hardware. In addition, these techniques
are quite flexible with respect to the content of the image and are easy reconfig-
urable depending on the application. However, most of the systems assume dis-
tinct features that are easily segmented/found in the image and the initialization of
tracking is in many cases done manually. Another group of tracking systems facili-
tates features like points, lines or circles. One of the techniques used for extracting
features is the Hough transform, (Hough 1962), (Ballard 1981), (Illingworth &
Kittler 1988), (Arbter et al. 1998). Although easy to generalize and quite simple to
implement, this approach requires time and storage space that increases exponen-
tially with the dimensionality of the parameter space. Active contours or snakes
(Terzopoulos 1987), (Kass et al. 1987), (Blake & Isard 1998) are usually used to
track moving rigid and semi-rigid objects. They allow tracking of arbitrary shapes
and are relatively robust to occlusions. There is a number of systems that em-
ploy snakes in the visual servoing loop (Couvignou et al. 1993), (Yoshimi & Allen
1994b), (Sullivan & Papanikolopoulos 1996), (Hollinghurst 1997), (Drummond &
Cipolla 1999b).

The following sections review the visual servoing work with respect to the
number of cameras and their configuration.

6.1 Monocular Vision

Monocular systems employ a camera either as a global sensor (stand–alone config-
uration) or as an eye–in–hand configuration. Systems using a monocular camera
usually adopt some form of model based visual techniques to facilitate the esti-
mation of the depth between the camera and the object. If the camera is used as a
global sensor, a geometric model of the object is commonly used to retrieve the full
pose of the object. On the other hand, in the eye–in–hand configuration, feature
and window based tracking techniques are more common.

A single camera minimizes the processing time needed to extract visual infor-
mation. However, the loss of depth information (if no model about the object is
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used) limits the types of servoing operations that can be performed as well as com-
plicating the control design. We now present some of the systems adopting a single
camera in different configurations.

VM1 Single Camera, Eye–in–Hand Configuration

This is one of the most common configurations. The camera is rigidly attached to
the robot’s end–effector. The transformation between the camera and end-effector
coordinate frames is usually known a–priori. A typical task is to servo the cam-
era so that the (tracked) image features achieve some predefined image positions.
Both the current and the desired positions of image features are usually inside the
image when the visual servoing sequence starts. Many of the reported systems sim-
plify the vision problem and use special fiducials for tracking (Hashimoto, Aoki &
Noritsugu 1996), (Espiau et al. 1992), (Horaud et al. 1998).

(Papanikolopoulos & Smith 1995) and (Brandt et al. 1994) use the sum-of-
squared differences (SSD) optical flow approach for tracking. The authors propose
a number of optimization techniques to speed up the correlation process. The sys-
tem is used for tracking static and moving targets (in terms of servoing). Image
features are selected automatically based on three confidence measures. The sys-
tem is also used to determine the distance between the camera and the tracked
object which is than used during the estimation of the image Jacobian.

(Basri et al. 1998) and (Basri et al. 1999) use an epipolar geometry approach
to retrieve the pose parameters between the current and the desired robot position.
Two algorithms are presented for both weak and full perspective camera models. It
is argued that the proposed method is attractive since no model of the environment
is needed. However, using an image of the environment to express the desired pose
of the robot is a very strong drawback in the case of a dynamic environment. The
issues of stability and convergence of the proposed approach are not addressed.

(Colombo et al. 1995) use an active contours approach to estimate the param-
eters of an affine transformation between the current and the desired images. This
is then used to estimate a motion parallax matrix which relates the differential in-
variants in the image to the four DOF of the robot used for positioning.

(Abrams et al. 1996) use a 5DOF robot for automatic planning of a camera
viewpoint for applications such as inspection. To solve the occlusion problem, the
system computes volumes swept by all moving objects and computes the viewpoint
which avoids the occlusion caused by these volumes. This is then used to control
a 5DOF gantry robot in an open–loop manner.

A number of visual servo systems using model based tracking to estimate the
pose of the object have been reported. (Kragić & Christensen 2000) and (Petersson
et al. 2000) present a voting based visual servo system used for door opening.
The visual system uses a 2D model and voting based integration of image cues
to detect the handle. After the handle is found, a servoing process is initiated to
finally position a robotic platform so that it may open a door.
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(Gengenbach et al. 1996) present a system that disassembles a polyhedral work-
piece where the model of the object is given. The pose of the workpiece is esti-
mated using the Iterated Extended Kalman Filter approach. Image features used in
the matching process are straight edge segments, corners and ellipses. During the
servoing (which is position based), the velocity of the object is estimated based on
the association between clusters of optical flow vectors and the projection of visible
model vertices. The system uses three stationary cameras to localize/recognize the
workpiece and single manipulator mounted camera to perform dismantling tasks.

(Wunsch & Hirzinger 1997) and (Wunsch et al. 1997) present a method for
model based pose estimation of an object based on a neural net approach. The
network topology is chosen in accordance with the representation of 3D orienta-
tion. The training is done entirely on synthetic views that are generated from a
wire frame model. The model based tracking algorithm and the position based vi-
sual servoing are employed in a system where a Kalman–filter approach is used to
estimate the velocity and acceleration of the object. Lines and elliptic features are
extracted using the Hough–transform. The important part of the system is that at
each step, features may be selected independently of those chosen in the previous
image which enables dynamic occlusion handling. First, the robot is positioned
with respect to a static object into some predefined position. After that, the target
starts to move, and the robot robustly follows it using all six degrees of freedom.

(Vincze et al. 1999b) use model based object tracking and Edge Projected In-
tegration of Cues (EPIC) for robot navigation and part handling. EPIC uses an
integration of color, intensity, texture and optical flow together with window based
line tracking to update the pose of the object in each frame.

(Drummond & Cipolla 1999a) and (Drummond & Cipolla 2000) present a sys-
tem for tracking of complex structures which employs the Lie algebra formalism.
The system is used to guide a robot into a predefined position (teach–by–showing
approach). An eye–in–hand camera configuration is used with a 5DOF robot. It
is shown how a two–dimensional affine transformation group can be used to im-
plicitly embed 3D knowledge within an image based servo system. The Jacobian
is computed from a series of trial robot motions performed in the vicinity of the
target location.

VM2 Single Camera, Stand–Alone Configuration

Using a camera as a global sensor is a particular characteristic of early visual servo
systems. A typical task may be to retrieve the pose of the object relative to the
camera (or robot) frame and based on the estimated pose, generate a suitable grasp.
After the grasp is performed, the object may be replaced. Such systems required
accurate camera and camera-to-manipulator calibration. One of the earliest visual
servo systems was presented by Shirai and Inoue in (Shirai & Inoue 1973). The
system uses edge extraction and line fitting to determine the complete pose of the
object.

Compared to an eye–in–hand camera, this configuration allows a wider field of
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view which was used in catching–robots applications. (Buttazzo et al. 1993) use a
calibrated static camera and a basket mounted at the end of robot chain to catch an
object that moves in a plane. A simple color segmentation method is used to detect
the object.

(Feddema et al. 1992) study both eye–in–hand and stand–alone single camera
configurations. The visual system extracts the position of corners, circles and line
end points in each frame. A combination of three features is selected to make the
desired degrees of freedom observable. The robot is servoed to remain a constant
relative pose with respect to a planar carburetor gasket.

(Yoshimi & Allen 1994b) present a system that uses snakes to simultaneously
track the fingers of a robotic hand and a bolt in order to align the fingers with the
bolt and unscrew it. A servo system is designed to control a planar motion of the
robot.

(Tonko et al. 1997) present a system that allows the manipulation of quasi- and
non-polyhedral objects using an independent, mobile camera configuration. The
camera is mounted on one robot manipulator and is used to control another robot
manipulator which performs the task. This kind of camera configuration allows
flexible sensor placement in the case of occlusions which improves the stability of
the system. This system is also used by (Ruf et al. 1997) where the application was
tracking and model based pose estimation of a robot end–effector. In addition, the
authors propose an adaptive on–line calibration of the kinematic chain of the robot.

(Kragić et al. 2001) present a system that integrates model based tracking and
a grasping simulator to perform grasp planning and execution. The vision system
is also used to monitor the stability of the grasp during pick–and–place tasks.

6.2 Binocular Vision

Two cameras in a stereo arrangement may be used to provide complete 3D infor-
mation about the scene. One of the common approaches is to estimate the dispar-
ity which is then used for depth estimation, (Marr & Poggio 1976), (Mayhew &
Frisby 1981), (Barnard & Fischler 1982) and (Konolige 1997). The fundamental
problem of disparity estimation is to match the corresponding features between two
or more images. One of the following approaches is usually adopted: i) matching
by correlating regions, and ii) matching features (corners, edges) between images.
Although these systems require twice as much computational time per iteration7

there is a number of visual servo systems using this configuration since it facili-
tates depth estimation without the use of explicit models as in case of monocular
systems. We briefly review some of the contributions.

7If we just make a rough comparison between monocular and stereo systems where the former
processes one image and the latter two per iteration.
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VM3 Binocular, Eye–in–Hand Configuration

This is a configuration that is seldom used in servoing tasks. Although it may
simplify the estimation of the depth, the limited baseline affects the accuracy of
the reconstruction.

In the beginning, this configuration was mainly used to reconstruct a wireframe
of an object. In (Arlotti & Granieri 1990), a robot arm is moved through a sequence
of poses during which pairs of images are acquired. Image features are matched by
a simple triangulation technique between subsequent pairs of images to estimate
their 3D positions. Using a curve growing algorithm, the wireframe of the object,
its dimensions and location are estimated.

(Pretlove & Parker 1991) use a stereo camera head mounted at the end of a
robot arm to guide the robot tool to the vicinity of a known object within the robot
workcell. Once there, the robot performs a variety of tasks such as assembly, pick
and place, interception of objects on a conveyor system, inspection and 3D gaug-
ing.

(Maru et al. 1993) employ image based visual servoing control to follow a
polyhedral object moving in a plane. Three dark circular features are tracked in
each image to provide the necessary input for to construct an image Jacobian.

(Brunner et al. 1994), (Arbter et al. 1998) and (Koeppe & Hirzinger 1999)
present a multisensory system which besides visual information uses laser-range-
finders, tactile and force torque sensors. Two different multisensory servoing meth-
ods are investigated: classical estimation theory and a neural net approach. The
focus is made on task–directed programming where the concept of an elemental
move is proposed. The concept allows the definition of subtasks which are then
used to program more complex robot tasks such as collision avoidance in the posi-
tion based visual servoing framework.

(Malis et al. 2000) adopt the image based visual servoing framework in a three
camera system rigidly attached around the cover of a steam generator held by a
robot. The cameras are used to observe the edges of the steam generator’s opening
while servoing the cover to close the generator (results are obtained with just two
cameras).

VM4 Binocular, Stand–Alone Configuration

This is a commonly used configuration. Compared to the eye–in–hand stereo con-
figuration, it is easy to make the baseline long enough so that the depth estimates
are accurate. This approach allows for a wide field of view which makes it easy to
observe both the robot and the target simultaneously. If the vision system is view-
ing the workspace from a large distance, linear camera models may be adopted
(Hollinghurst & Cipolla 1994).

(Andersson 1989a) and (Andersson 1989b) present one of the earliest stereo
visual servo systems. The particular application is a ping-pong playing robot. The
vision system extracts the ball using simple color segmentation and a dynamic
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model of the ball trajectory. The system is accurately calibrated and the robot
is controlled using the position based approach. Another similar application is a
catching robot presented in (Burridge et al. 1995) and a juggling robot presented
in (Rizzi & Koditschek 1994) where the first moments of a blob are used to track a
white ping–pong ball against a black background.

(Allen et al. 1993) describe a system for tracking and grasping a moving object
using the position based servoing control. The system relies on real–time stereo
triangulation of optic–flow fields and is able to cope with the inaccuracy of the
imaging system by applying parameterized filters that smooth and predict the posi-
tion of the moving object. The object tracked is a toy–train on a circular trajectory.
Once the tracking is achieved, a grasping strategy is applied. The authors use a
pair of calibrated stereo cameras that view the toy–train from above. It is argued
that the use of optical flow allows robust performance without any special light-
ning or the knowledge about the object structure. Since the train moves on a planar
surface, three translational plus one rotational degree of freedom of the robot are
controlled.

(Hager 1995a) and (Hager 1995b) demonstrates a binocular visual servo sys-
tem where the servoing is performed without the accurate calibration between the
sensor and the robot system. The robot manipulator is controlled using the image
based control framework. The XVision system (Hager & Toyama 1996) is used
to track features such as lines, regions, corners, etc. The particular application
is the insertion of a floppy-disc into a polyhedral floppy drive. The goal pose of
the floppy-disc relative to the drive is determined using projective invariants. The
system simultaneously tracks the robot end-effector and object features. An error
function based on the image plane distance between the end-effector and the target
is defined and a control law that moves the robot to drive this error to zero is de-
rived. The control law has been integrated into a system that performs tracking and
stereo control on a single processor with no special purpose hardware in real-time.
In his later work (Hager 1997) the idea of “primitive skills” is presented where it is
argued that simple skills could be applied in a variety of combinations to perform
more sophisticated tasks.

(Hollinghurst & Cipolla 1994) and (Hollinghurst 1997) describe a system that
combines stereo vision to enable a 5DOF manipulator to locate, reach and grasp
polyhedral objects. The system uses an affine stereo algorithm to estimate posi-
tions and surface orientations of the target objects. The calibration is performed
by observing four reference positions of the robot. The feedback is provided by
an affine active contour model which tracks the motion of the gripper across the
stereo images. Although the objects to be grasped are of a quite simple geometrical
shape and an overall planar constraint is used, the main contribution of this work
is the automatic object pose estimation and grasping. The user points to the object
to be grasped and the vision system computes its pose. The visual servo system
drives the gripper to align the frontal plane of the target with the plane containing
the affine contour of the gripper, after which a blind grasp is performed.
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(Grosso et al. 1996) control a robot to insert an end-effector-mounted pen into
its translationally moving top. Visual measurements are obtained by optical flow
and are used to control 5DOF of the robot.

(Nelson & Khosla 1995) use texture-mapped models together with correlation
based tracking during the assembly of a rotor-stator motor pair. The stationary
stereo system updates a texture-mapped 3D CAD model of the objects and the
gripper. Only translational degrees of freedom are controlled.

(Kragić & Christensen 1999a) present a system where a visual cue integration
scheme is used to track a robot end-effector. It is shown how a robust tracking
system can be designed using simple and fast vision algorithms. Based on the
image measurements, a pan–tilt unit is controlled to keep the end–effector centered
in the image.

6.3 Redundant Camera Systems

The use of multiple cameras provides additional information compared to a single
or stereo camera configurations (Hartley & Zisserman 2000). However, matching
across multiple views is usually a time consuming and non–trivial problem. There-
fore, servo systems that employ more than two cameras for controlling a robot are
rare.

(Gengenbach et al. 1996) uses three stationary cameras as a part of a robot
workcell to estimate the pose of a workpiece. After the pose is estimated, the
object is picked up by a robot arm. During the grasping sequence, the robot is
controlled using an eye-in-hand camera.

(Scheering & Kersting 1998) present a visual servo system using multiple cam-
eras. A theoretical framework for servo control is given based on a parallel (linear)
camera model. Template based matching is used to track the target in six views to
perform a point-to-point positioning task.

(Kragić & Christensen 1999b) present a system that uses a trinocular vision
system for grasping. Two of the cameras are arranged in a stereo system with par-
allel optical axis and short baseline (20 cm). The third camera observes the robot
workspace vertically from above. It is shown how the accuracy of estimation of ob-
ject position can be increased by using the third camera. Color based segmentation
is used to determine the position of an object in the image.

(Wilson et al. 1996) and (Wilson et al. 1998) propose a feature planning method
for defining the optimum set of features for visual servoing as a manipulator moves
relative to the target object. In addition, methods for dealing with redundant sen-
sors, including multiple cameras are presented as well as the effect of the image
processing and visual servoing on the robustness. The visual servoing problem is
divided into two major functions: real–time estimation of the target’s pose with
respect to the camera coordinate system and the implementation of the Cartesian
robot controller. Binary image processing is used to determine hole and corner
image features using a manipulator mounted camera. A Kalman filter based al-
gorithm estimates the relative pose of the target object with respect to the camera
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which is used in conjunction with the object geometrical description to predict the
window size and location for each feature between consecutive images.

7 Control Generation and System Design

The literature on visual servoing control usually focuses on kinematic issues and
ignores a number of fundamental questions of dynamic control, (Corke & Good
1996). One of the dynamic characteristics is the latency of the vision system. In
many of the existing systems, the speed of the manipulator and feedback gains are
often strictly limited to ensure that dynamical issues can be safely ignored. In addi-
tion, visual servo systems are usually limited by problems like nonlinearities inher-
ent in a camera lens system, time consuming image processing algorithms, unre-
liable sensor data, inadequately modeled plants or systems. A commonly adopted
approach in visual servoing control is the use of simple proportional controllers.
Although it is shown that this approach drives the steady state to zero, there is no
any implication about performance when tracking a moving object (Hutchinson
et al. 1996).

To solve some of the mentioned problems, the idea of a modular framework
has been proposed in the literature. In (Kosecka & Bajcsy 1994) and (Kosecka
et al. 1995) a visual servo system is modeled using a finite state automata (FSA)
framework through a formalism of states and events. The states correspond to
execution of actions, while events correspond to observations and actions and cause
transitions between the states. The main idea here is to design a complex task as
a multitude of simple ones. Each simple task should rely on a sensory input and
allow for failure or success detection. In either way (failure or success) a transition
could be made to the previous or to the next state. Each state receives simple and
fast sensory input instead of designing general purpose algorithms. The use of
simple algorithms solves problems such as latency. In addition, having a number
of different states facilitates easier error recovery and therefore more reliable task
execution. In addition, different visual-motor models may be used for different
tasks which results in a more stable performance. A similar idea was also proposed
in (Dodds et al. 1999).

In terms of control design, there are few notable contributions. (Feddema &
Lee 1990) use a self–tuning regulator approach to visually track a known moving
object with an eye–in–hand camera. The image based visual servoing framework is
adopted. A fixed number of features is used during the evaluation (three features) of
the approach. Although only simulation results are provided, a full 6DOF system
is considered.

(Corke & Good 1996) examine the dynamics of visual servo systems based on
actuators controlled in torque, velocity or position modes. The main contribution
of this work is the experimental verification of the belief that the velocity mode
has a number of advantages. It is argued that in order to achieve high–performance
visual servoing, it is necessary to minimize open–loop latency, have an accurate

35



dynamic model of the system, and employ a feedforward type control strategy.
(Papanikolopoulos et al. 1993) uses a number of control schemes in an im-

age based visual servoing framework. The control schemes considered are PI,
pole–assignment and LQG. A correlation based tracker is used to provide the mea-
surements and the depth is known in advance and assumed constant. It is argued
that the selection of the controller depends on the image noise and the number and
quality of the used feature points. It is concluded that one–step–ahead controllers
are appropriate for accurate measurements while stochastic control techniques are
suited in the case of noisy visual measurements. In this study, only planar motion
of the target is considered and, as mentioned, in the case of a full 3D motion the
problem becomes much more complex an nonlinear. Some of the issues regarding
the full 3D motion are considered in their later work (Papanikolopoulos et al. 1995)
in terms of adaptive control.

(Hashimoto, Ebine & Kimura 1996) discuss the controllability of a visual servo
system in the case of redundant features extracted by the vision system. A lin-
ear time–invariant, multi–input multi–output model is used to model the system.
The image features are considered as state variables and joint velocities as control
inputs. The state variables are decomposed into controllable and uncontrollable
modes and local reachability of the system is proven.

(Krautgartner & Vincze 1998) and (Vincze 2000) approach the issue of dynam-
ics in visual servo systems by evaluating the tracking performance of the vision
system and finding the optimal system configuration. The evaluated configurations
are serial and parallel image acquisition and processing on one side and pipeline
processing on the other. The basis of the optimization is the design of optimal
controller independent of the system configuration. Using this controller design a
relation between system latency and maximum pixel error is derived and used to
find maximum dynamic performance for the system configurations. They propose
the maximum velocity of a target that can be tracked by the vision system as the
performance measure. The final comparison shows that processing in a pipeline
obtains the highest velocity and the optimal number of steps in a pipeline are de-
rived.

8 Visually Guided Systems - A Summary

Previous sections have presented approaches and techniques adopted by most of
the existing visual servo systems. For the clarity reasons we have attempted to
summarize the reported systems according to the number of controlled degrees
of freedom, type of the visual-motor model estimation and type of the camera
configuration, see Table 1. In this way, we have abbreviated a significant amount of
detail contributed by each reference. The main goal has been to establish a concise
and common nomenclature and we encourage the readers interested in more detail
to consult the provided references.
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Table 1: Visual servo systems summarized according to the number of
controlled degrees of freedom (DOF), type of the visual-motor model
estimation (EL (estimated by learning) or EA (estimated analytically)
and a–priori known models: PB (position based), IB (image based) and
2 1/2 (2 1/2D visual servoing)) and type of camera configuration VM as
presented in Figure 3: VM1 monocular eye–in–hand, VM2 monocular
stand–alone, VM3 binocular eye–in–hand, VM4 binocular stand–alone
and VM5 redundant camera system.

Control Camera

Reference DOF Type Configuration

(Allen et al. 1993) 4 PB VM4

(Allotta & Colombo 1999) 6 IB VM1

(Abrams et al. 1996) 5 PB VM1

(Ahluwalia & Fogwell 1986) 2 IB VM2

(Andersson 1989a) 6 PB VM4

(Bard et al. 1994) 6 PB VM4

(Basri et al. 1998) 6 PB VM1

(Bell & Wilson 1996) 2/4 PB VM1

(Bensalah & Chaumette 1995) 6 IB VM1

(Brunner et al. 1994) 6 IB VM3

(Burdet & Luthiger 1996) 3 EL VM2

(Buttazzo et al. 1993) 3 PB VM2

(Carusone & D’Eleurterio 1998) 3 EL VM1

(Castano & Hutchinson 1994) 2/3 IB/PB VM2

(Chaumette et al. 1991) 6 IB VM1

(Christensen et al. 1999) 6 IB VM1

(Colombo et al. 1995) 4 IB/PB VM1

(Corke & Good 1996) 6 IB VM1

(Couvignou et al. 1993) 4 IB VM1

(Doignon et al. 1994) 6 PB VM1

(Drummond & Cipolla 1999b) 6 IB VM1

(Dufournaud et al. 1998) 6 IB VM4

(Ejiri et al. 1994) 6 PB VM1
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Control Camera

Reference DOF Type Configuration

(Espiau et al. 1992) 6 IB VM1

(Feddema et al. 1992) 6 IB VM1,VM2

(Fernandes & Lima 1998) 2 IB, PB VM2

(Flandin et al. 2000) 6 IB VM1, VM2

(Gangloff et al. 1999) 6 PB VM1

(Garric & Devy 1995) 6 PB VM1

(Gengenbach et al. 1996) 6 PB VM1,VM5

(Grosso et al. 1996) 5 IB VM4

(Hager 1995a), (Hager 1997) 6 IB VM4

(Han & Kuc 1998) 2 IB VM1

(Han et al. 1999) 6 IB VM1,VM3

(Hashimoto & Noritsugu 1998) 6 IB VM1

(Haikkilä et al. 1989) 6 PB VM4

(Hervé et al. 1991) 5 EL VM2

(Hollinghurst 1997) 4 PB VM4

(Horaud et al. 1998) 6 IB VM4

(Hosoda & Asada 1994) 6 EA VM4

(Houshangi 1990) 2 PB VM2

(Hwang & Weng 1997) 6 EL VM4

(Ikonen & Kälviäinen 1997) 3 PB VM2

(Ishikawa et al. 1999) 3 IB VM2

(Jang & Bien 1991) 3 IB VM1

(Jarabek & Capson 1998) 2 IB VM2

(Joshi & Sanderson 1996) 5 IB VM4

(Jägersand et al. 1997) 3-12 EA VM4

(Kamon et al. 1998) 3 EL VM2

(Kelly et al. 1996) 2 IB VM2

(King et al. 1988) 6 PB VM3

(Koeppe & Hirzinger 1999) 3 PB VM1,VM3
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Control Camera

Reference DOF Type Configuration

(Koivo & Houshangi 1991) 3 PB VM2

(Kragić et al. 2001) 6 IB VM2

(Lange et al. 1998) 3 PB VM1

(Leonard et al. 1994) 3 PB VM1

(Li & Lee 1996) 3 PB VM2

(Malis et al. 1998) 6 2 1/2 VM1

(Malis et al. 2000) 6 IB, 2 1/2 VM3

(Martinet & Gallice 1999) 6 PB VM1

(Maru et al. 1993) 6 IB VM3

(Maruyama & Fujita 1997) 2 IB VM1

(Mezouar & Chaumette 2000) 6 2 1/2 VM1

(Miller 1989) 4 EL VM1

(Nakadokoro et al. 1999) 3 IB VM4

(Nelson & Khosla 1995) 6 IB VM4

(Oh & Allen 1998) 5 IB VM1

(Okhotsimsky et al. 1997) 6 PB VM2

(Papanikolopoulos et al. 1995) 6 IB VM1

(Peipmeier et al. 1999a) 2 EA VM2

(Rives & Borrelly 1997) 5 IB VM1

(Porill et al. 1988) 6 PB VM4

(Pretlove & Parker 1993) 6 PB VM3

(Pissard-Gibollet & Rives 1995) 3 IB VM1

(Rizzi & Koditschek 1994) 4 PB VM4

(Ruf et al. 1997) 6 PB VM2

(Rygol et al. 1990) 6 PB VM4

(Sanz et al. 1998) 4 EL VM1

(Scheering & Kersting 1998) 3 IB VM5

(Schrott 1992) 6 PB VM1

(Seelinger et al. 1998) 6 IB VM4
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Control Camera

Reference DOF Type Configuration

(Seitz et al. 1995) 6 PB VM1

(Sharma & Hutchinson 1997) 3-6 IB VM2

(Shirai & Inoue 1973) 6 PB VM2

(Sitti et al. 1995) 2 PB VM2

(Skaar et al. 1987) 1 IB VM2

(Stieber et al. 1999) 6 PB VM2

(Suh 1996) 4 EL VM1

(Sutanto et al. 1998) 6 EA VM1

(Taylor et al. 1985) 6 PB VM1

(Tell 2000) 6 2 1/2 VM1

(Tonko et al. 1997) 6 PB VM2

(Triggs & Laugier 1995) 6 PB VM1

(Vincze et al. 1999a) 6 PB VM1

(Walter & Schulter 1993) 3 EL VM4

(Westmore & Wilson 1990) 3 PB VM1

(Wilson et al. 1996) 2/4 PB VM1

(Wunsch & Hirzinger 1997) 6 PB VM1

(Xiao et al. 1998) 6 PB VM2

(Yoshimi & Allen 1994a) 3 IB VM1

(Zergeroglu et al. 1999) 2 PB VM2

(Zhang et al. 1990) 3 PB VM1

9 Discussion

We have presented trends that have evolved in visual servoing approaches for
robotic manipulation tasks during the past three decades. The attempt was to es-
tablish a concise and common nomenclature and to provide a number of references
that contributed to this field. The main emphasis was on the extraction of visual
information and the estimation of the visual–motor model.

Early visual servo systems relied on perfect calibration of the robot/camera sys-
tem and mainly adopted position based visual servoing. The tasks were performed
in structured and controlled environments. The position based approach is nowa-
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days mostly used in connection with trajectory generation for obstacle avoidance
or tracking of a moving target.

The current trend in robotics is toward the capability of a robotic system to op-
erate in highly dynamic (changing) environments. Position based systems require
calibration which may be difficult, time consuming or even impossible to obtain.
Image based and 2 1/D visual servoing are more adequate and commonly used in
cases where accurate calibration parameters are not known. In addition, approaches
where the visual-motor model is learned or estimated prior or during the execution
of the task have also been proposed in the literature and briefly reviewed.

The theoretical basis of image plane dynamics and robust image based servo
systems capable of manipulating moving objects, are still open issues. One of the
drawbacks of image based systems is the computation of the image Jacobian. As
already mentioned, it depends on the distance between the camera and the tar-
get which is in direct relation to the camera configuration used. Many monocular
systems utilize a constant Jacobian or perform a partial pose estimation which re-
quires some pre-knowledge about the target shape. This, of course, greatly affects
the flexibility of the servo system.

A notorious problem in computational vision in general is figure–ground seg-
mentation, i.e., extraction of visual features from a video stream. In general, the
visual appearance of an object depends upon a rich variety of parameters includ-
ing geometry, surface characteristics, illumination, the geometric relation between
camera and object(s), etc. The large number of parameters implies that it is dif-
ficult to define robust methods for the extraction of features. Feature extraction
methods attempt to exploit various kinds of invariance for the design of “matched
filters” that can simplify the detection. Most of the reported work uses points or
lines for servoing onto objects. All of these features rely on robust detection of dis-
continuities and assembly of these into aggregate features. One approach to robust
detection of features is fusion of multiple visual features into a joint representation
of the object where approaches similar to the one presented in (Kragic 2001) may
be employed.

Another problem in figure ground segmentation is the separation of features
belonging to the objects from features belonging to the background. Typically, vi-
sual servoing is carried out on objects that have no surface texture to simplify the
detection. For objects with surface texture and in cases of a cluttered background
there is a need to use other types of methods. Typical examples may include binoc-
ular disparity and consistency of motion fields to allow separation of the object
from the background.

Almost all of the examples reviewed have involved either planar structures,
polyhedral objects or structures with an associated detailed CAD model for match-
ing. It is, however, not obvious that any of the existing strategies will generalize to
objects such as a regular cup. In particular, the presented approaches have relied on
control using a Jacobian matrix that is designed for a 2D feature or combinations
of 2D features. For curved objects, the object features will change the geometric
structure as a function of the viewpoint, and simple image features are thus more
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difficult to exploit for visual servoing. At the same time, the visible object bound-
ary might even change structure as a function of the viewpoint as demonstrated by
the vast amount of research on view analysis. One of the examples is the research
on aspect graphs (Bowyer & Dyer 1990). The problem of visual servoing will thus
have to be redefined for the handling of complex curved objects.

To allow for flexible visual servoing, some of the ideas from the field of ac-
tive vision, (Bajcsy 1988) and (Aloimonos et al. 1988) may be employed. Here,
the control strategies may be “formulated as a search of such sequence of steps
that would minimize a loss function while one is seeking the most information.”,
(Bajcsy 1988). The objective here is an on-line selection of features and corre-
sponding Jacobians for dynamic selection of control strategies. Following again
the ideas from active vision, the implications of an active approach are the follow-
ing:

• Local models - Here, we assume a sensor (camera) model which might be
precisely/coarsely/uncalibrated together with image processing techniques
used for a particular task.

• Global models- Local models deliver data which are then used by a “higher
level” reasoning processes. This processes can be modeled a–priori, e.g.,
i) different types of image Jacobians depending on the type of features cur-
rently delivered by a local model, or ii) control strategies suitable for the
current task.

To implement such a strategy we need: i) a good understanding of the envi-
ronment (sensor/camera model, ambient light, uncertainty models) and ii) general
algorithms (to make them robust for general scenes and arbitrary objects - edge
detection, color segmentation, pose estimation). Most of these issues are open
research subjects across and within different areas.

A commonly adopted approach in visual servoing control is the use of simple
proportional controllers. Although it is shown that this approach drives the steady
state to zero, there is no any implication about performance when tracking a mov-
ing object (Hutchinson et al. 1996). In addition, (Corke & Good 1996) discusses
the significance of visual dynamic control as opposed to the kinematic approach
commonly adopted.

Manipulation of objects involves a sequence of steps that as a minimum in-
volve: recognition of object of interest, servoing onto the object, preshaping of the
gripper (estimation of 3D Object structure, use of a model of the object), grasp-
ing and manipulation of the object and placement/release of the object. It is not
immediately obvious that each of these different steps should be carried out us-
ing a single unified visual servoing strategy. It might be beneficial to use different
strategies for the various steps. As an example for the servoing onto an object
the depth variation might be significant and a point based (Centre of Mass) might
be adequate to bring the gripper into the vicinity of the object. Once the gripper
is close to the object, another set of features might be used for alignment of the

42



gripper with the object (which involves grasp planning), finally the servoing must
bring the gripper to a position that allows physical contact and during this phase
observability of features and radical changes in relative depth call for other types
of visual servoing. Such an approach has already been demonstrated in (Dodds
et al. 1999).

One of the things that not discussed here is the time requirement. Here, we
may see two streams: development of dedicated i) hardware or ii) software to
provide a fast feedback loop. For a service kind of robot it is very difficult to
see a direct contribution of such systems since we require scalability and flexibility.
However, some recent systems have shown that the rapid development of computer
technology allows real-time performance of complex visual algorithms, e.g., model
based pose estimation and tracking.

Considering the existing visual servo systems, it seems that the general trend
is to concentrate on one part of the whole servoing loop. The focus is either on
developing a fast and reliable perception part of the system or demonstrating a new
and flexible control design. These two issues are not independent and both of them
should be considered in order to design a robust and flexible visual servo system.
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